FARMACOPETA BRASILEIRA

6ª EDIÇÃO

Agência Nacional de Vigilância Sanitária - Anvisa

Farmacopeia Brasileira, 6ª edição

Volume II – Monografias

Plantas Medicinais

PLANTAS MEDICINAIS

ABACATEIRO, folha	PM001-00
ACÔNITO, raiz	PM002-00
ALCACHOFRA, folha	PM003-00
ALCAÇUZ, raiz	PM004-00
ALHO, bulbo	PM005-00
ALOE, exsudato seco	PM006-01
ALTEIA, raiz	PM007-00
AMEIXA, fruto	PM008-00
ANGICO, casca	PM009-00
ANIS-DOCE, fruto	PM010-00
ANIS-ESTRELADO, fruto	PM011-00
ARNICA, flor	PM012-00
AROEIRA, casca	PM013-00
BABOSA, folha	PM014-00
BÁLSAMO-DE-TOLU	PM015-00
BÁLSAMO-DO-PERU	PM016-00
BARBATIMÃO, casca	PM017-00
BAUNILHA, fruto	PM018-00
BELADONA, folha	PM019-00
BENJOIM	PM020-00
BOLDO, folha	PM021-00
CALÊNDULA, flor	PM022-01
CAMOMILA, flor	PM023-00
CANELA-DA-CHINA, casca	PM024-00
CANELA-DO-CEILÃO, casca	PM025-00
CAPIM-LIMÃO, folha	PM026-00
CARDAMOMO, semente	PM027-00
CARQUEJA, caule alado	PM028-00
CÁSCARA-SAGRADA, casca	PM029-00
CASTANHA-DA-ÍNDIA, semente	PM030-00
CENTELA, folha	PM031-00
CHAMBÁ, folha	PM032-00
CHAPÉU-DE-COURO, folha	PM033-00
COENTRO, fruto	PM034-00
CRATEGO, folha e flor	PM035-01
CRAVO-DA-ÍNDIA, botão floral	PM036-00
CÚRCUMA, rizoma	PM037-01
ENDRO, fruto	PM038-00
ESPINHEIRA-SANTA, folha	PM039-00
ESTÉVIA, folha	PM040-00
ESTRAMÔNIO, folha	PM041-00

EUCALIPTO, folha	PM042-00
FUNCHO-AMARGO, fruto	PM043-00
FUNCHO-DOCE, fruto	PM044-00
GARRA-DO-DIABO, raiz	PM045-00
GENCIANA, rizoma e raiz	PM046-00
GENGIBRE, rizoma	PM047-00
GOIABEIRA, folha	PM048-00
GUACO-CHEIROSO, folha	PM049-00
GUARANÁ, semente	PM050-00
HAMAMELIS, folha	PM051-00
HIDRASTE, rizoma e raiz	PM052-00
HORTELÃ-DO-BRASIL, parte aérea	PM053-00
HORTELÃ-PIMENTA, folha	PM054-00
JALAPA, raiz	PM055-00
JUCÁ, casca	PM056-00
JUCÁ, fruto	PM057-00
LARANJA-AMARGA, exocarpo	PM058-00
MACELA, flor	PM059-00
MALVA, flor	PM060-00
MARACUJÁ-AZEDO, folha	PM061-01
MARACUJÁ-DOCE, folha	PM062-01
MEIMENDRO, folha	PM063-00
MELISSA, folha	PM064-01
NOZ-DE-COLA, semente	PM065-00
NOZ-VÔMICA, semente	PM066-00
PITANGUEIRA, folha	PM067-01
PLANTAGO, testa	PM068-00
POLÍGALA, raiz	PM069-00
QUEBRA-PEDRA, parte aérea	PM070-00
QUEBRA-PEDRA, parte aérea	PM071-00
QUILAIA, casca	PM072-00
QUINA-AMARELA, casca	PM073-00
RATÂNIA, raiz	PM074-00
RAUVOLFIA, raiz	PM075-00
RUIBARBO, rizoma e raiz	PM076-01
SABUGUEIRO-DO-BRASIL, flor	PM077-01
SABUGUEIRO, flor	PM078-01
SALGUEIRO-BRANCO, casca	PM079-00
SENE, folha	PM080-01
SENE, fruto	PM081-00
UVA-URSI, folha	PM082-00
VALERIANA, rizoma e raiz	PM083-00

PREPARAÇÕES VEGETAIS – TINTURAS

ACÔNITO, tintura	PM084-00
ANGICO, tintura	PM085-00
ANIS-ESTRELADO, tintura	PM086-00
AROEIRA, tintura	PM087-00
BÁLSAMO-DE-TOLU, tintura	PM088-00
BAUNILHA, tintura	PM089-00
BENJOIM, tintura	PM090-00
BOLDO, tintura	PM091-00
CALÊNDULA, tintura	PM092-00
CAMOMILA, tintura	PM093-00
CANELA-DO-CEILÃO, tintura	PM094-00
CÁSCARA-SAGRADA, tintura	PM095-00
CASTANHA-DA-ÍNDIA, tintura	PM096-00
CÚRCUMA, tintura	PM097-00
GENCIANA, tintura	PM098-00
GUARANÁ, tintura	PM099-00
HAMAMELIS, tintura	PM100-00
JABORANDI, tintura	PM101-00
LARANJA-AMARGA, tintura	PM102-00
NOZ-VÔMICA, tintura	PM103-00
RATÂNIA, tintura	PM104-00
VALERIANA, tintura	PM105-00

PREPARAÇÕES VEGETAIS – EXTRATO FLUIDO

ALCACHOFRA, extrato fluido	PM106-00
ALCAÇUZ, extrato fluido	PM107-00
AMEIXA, extrato fluido	PM108-00
ANGICO, extrato fluido	PM109-00
AROEIRA, extrato fluido	PM110-00
BOLDO, extrato fluido	PM111-00
CALÊNDULA, extrato fluido	PM112-00
CANELA-DO-CEILÃO, extrato fluido	PM113-00
CÁSCARA-SAGRADA, extrato fluido	PM114-00
CASTANHA-DA-ÍNDIA, extrato fluido	PM115-00
CRATEGO, extrato fluido	PM116-00
GENCIANA, extrato fluido	PM117-00
GUARANÁ, extrato fluido	PM118-00
HAMAMELIS, extrato fluido	PM119-00
LARANJA-AMARGA, extrato fluido	PM120-00
NOZ-DE-COLA, extrato fluido	PM121-00
NOZ-VÔMICA, extrato fluido	PM122-00
RATÂNIA, extrato fluido	PM123-00
VALERIANA, extrato fluido	PM124-00

ÓLEOS, GORDURAS E CERAS

ALECRIM, óleo	PM125-00
ALGODÃO, óleo refinado	PM126-00
ANIS-DOCE, óleo	PM127-00
CAMOMILA, óleo	PM128-00
CANELA-DA-CHINA, óleo	PM129-00
CANELA-DO-CEILÃO, óleo	PM130-00
CAPIM-LIMÃO, óleo	PM131-00
CERA DE CARNAÚBA	PM132-00
COENTRO, óleo	PM133-00
CRAVO-DA-ÍNDIA, óleo	PM134-00
EUCALIPTO, óleo	PM135-00
EUCALIPTO-LIMÃO, óleo	PM136-00
FUNCHO, óleo	PM137-00
GIRASSOL, óleo refinado	PM138-00
HORTELÃ-DO-BRASIL, óleo	PM139-00
HORTELÃ-PIMENTA, óleo	PM140-00
LARANJA-AMARGA, óleo	PM141-00
LARANJA-DOCE, óleo	PM142-00
LIMÃO, óleo	PM143-00
MANTEIGA DE CACAU	PM144-00
MELALEUCA, óleo	PM145-00
NOZ-MOSCADA, óleo	PM146-00
OLIVA, óleo virgem	PM147-00
PALMA-ROSA, óleo	PM148-00
TOMILHO, óleo	PM149-00

MACELA, flor Achyroclines flos

A droga vegetal consiste de inflorescências secas de Achyrocline satureioides (Lam.) DC., contendo, no mínimo, 3,0% de flavonoides totais calculados como quercetina, no mínimo, 0,8% de quercetina $(C_{15}H_{10}O_7, 302,24)$, e, no mínimo, 0,6% de 3-O-metilquercetina $(C_{16}H_{12}O_7, 316,27)$.

CARACTERÍSTICAS

As inflorescências possuem coloração variando de amarelo-pálido à amarelo-ouro intenso e odor aromático característico.

IDENTIFICAÇÃO

A. Descrição macroscópica

A droga é constituída de flores reunidas em capítulos agrupados em glomérulos, sendo estes por sua vez organizados em cimas paniculiformes. Cada capítulo apresenta quatro a oito flores dimorfas, protegidas por um invólucro subcilíndrico, de 4 a 7 mm de altura, formado por nove a 14 brácteas involucrais escariosas, hialinas, naviculares, imbricadas, dispostas em três ou quatro séries, de coloração amarela, amarelo-clara, amarelo-pálida a esverdeada, ou ainda amarelo-dourada, amareloparda a amarelo-avermelhada. Brácteas externas de 2,5 a 3 mm de comprimento; brácteas medianas de 3,5 a 4,5 mm de comprimento; brácteas internas de 3 a 7 mm de comprimento, todas com tricomas tectores simples, lanosos, de 2 a 3 mm de comprimento e/ou tricomas glandulares apenas no seu terço inferior externo. Flores marginais três a seis, pistiladas, com corola filiforme, de 3 a 4,5 mm de comprimento, dentada ou partida no ápice, com tricomas glandulares na porção apical externa; estilete filiforme, bífido, glabro, dilatado próximo à base, com ramos estigmáticos geralmente exsertos na maturação, de ápice truncado, papiloso e com uma coroa de tricomas na porção apical; ovário ínfero, bicarpelar e unilocular, monospérmico; papus unisseriado, com cerca de 20 cerdas brancas, ásperas, livres entre si na base, que alcançam quase a mesma altura da corola, raramente mais. Flores do disco uma a três, perfeitas, com corola tubulosa, estreita, de 3 a 4,5 mm de comprimento; tubo ligeiramente dilatado na base e limbo pentadentado, dentes com tricomas glandulares na face externa; androceu com cinco estames, epipétalos, inseridos na metade inferior da corola, com anteras sinânteras, de 1,5 a 2 mm de comprimento, com deiscência longitudinal e introrsa, sagitadas na base, apresentando duas caudas laciniadas, uma de cada lado; conetivo prolongado em um apêndice apical triangular, levemente obtuso, hialino; ovário, estilete e papus semelhantes aos das flores pistiladas. Fruto aquênio, castanho-claro ou pardo, de 0,7 a 0,8 mm de comprimento, elipsoidal a obovado, levemente comprimido, glabro, de superfície papilosa.

B. Descrição microscópica

A face abaxial das brácteas apresenta epiderme formada por células alongadas, de formato retangular. No terço inferior ocorrem tricomas tectores pluricelulares e unisseriados, e/ou glandulares, formados por um pedicelo bi a trisseriado, com três ou quatro camadas de células e por duas células terminais ovalado-alongadas, bem maiores do que as anteriores. Os tricomas glandulares das brácteas medem 60 a 100 μm de comprimento total e sua cabeça possui diâmetro de 30 a 40 μm. O papus é constituído de cerdas longas, formadas por células alongadas, hialinas, de paredes finas, muitas delas projetadas lateralmente. A face abaxial da corola apresenta epiderme formada por células alongadas, de contorno poligonal. Cinco feixes vasculares percorrem longitudinalmente o tubo da corola. As lacínias são

cobertas na face externa por tricomas glandulares semelhantes aos das brácteas. Os grãos de pólen apresentam exina espinhosa, são esferoidais e tricolpados, medindo de 17 a 35 µm de diâmetro. O ovário é recoberto por uma camada de células epidérmicas poligonais, seguido por um tecido parenquimático constituído por várias camadas de células, que na maturação se reduzem a três ou quatro. Internamente, encontra-se apenas um rudimento seminal anátropo, preenchendo totalmente a cavidade ovariana. O estilete apresenta uma expansão globosa próxima à base, constituída por numerosas células arredondadas, de paredes finas. O fruto, quando maduro, apresenta um pericarpo formado por três ou quatro camadas de células.

C. Descrição microscópica do pó

A amostra satisfaz a todas as exigências estabelecidas para a espécie, menos os caracteres macroscópicos. São características: coloração amarela ou uma variante de amarelo; brácteas involucrais ou seus fragmentos; fragmentos de corola das flores liguladas; fragmentos de corola das flores tubulosas; fragmentos do tubo da corola com células alongadas, de contorno poligonal, com ou sem porções de feixes vasculares; fragmentos de lacínias da corola com tricomas glandulares, como os descritos em microscopia; tricomas glandulares esparsos; cerdas do papus ou seus fragmentos com células projetadas lateralmente; estames ou partes destes com anteras sagitadas na base e cauda laciniada; grãos de pólen como os descritos; estiletes bífidos de base dilatada, ou fragmentos destes; aquênios como os descritos; fragmentos do pericarpo; fragmentos do tegumento da semente.

D. Proceder conforme descrito em *Cromatografia em camada delgada* (5.2.17.1).

Fase estacionária: celulose.

Fase móvel: clorofórmio, ácido acético e água (50:45:5).

Solução amostra: adicionar 0,3 g da droga em 15 mL de álcool metílico e agitar durante 20 minutos. Filtrar e secar o filtrado em banho-maria. Suspender o resíduo em 1 mL de álcool metílico.

Solução referência (1): preparar solução com concentração de 100 µg/mL de quercetina em álcool metílico.

Solução referência (2): preparar uma solução com concentração de 100 µg/mL de luteolina em álcool metílico.

Solução referência (3): preparar uma solução com concentração de 100 µg/mL de 3-Ometilquercetina em álcool metílico.

Procedimento: aplicar na cromatoplaca, separadamente, em forma de banda, 10 µL da Solução amostra e 10 µL das Soluções referência (1), (2) e (3). Desenvolver o cromatograma. Remover a cromatoplaca e deixar secar ao ar. Nebulizar a placa com difenilborato de aminoetanol SR, e, em seguida, com solução de macrogol 400 a 5% (p/v) em álcool metílico. Examinar sob a luz ultravioleta em 365 nm, após, no mínimo duas horas.

Resultados: no esquema a seguir há as sequências de zonas obtidas com a Solução amostra, a Solução referência (1), a Solução referência (2) e a Solução referência (3). Outras zonas podem, ocasionalmente, aparecerem.

Parte superior da placa		
Luteolina: zona de fluorescência laranja	Zona de fluorescência laranja	
3-O-Metilquercetina: zona de fluorescência amarela	Zona de fluorescência amarela	
Quercetina: zona de fluorescência laranja	Zona de fluorescência laranja	
Solução referência	Solução amostra	

E. Proceder conforme descrito em *Cromatografia em camada delgada* (5.2.17.1).

Fase estacionária: sílica gel GF₂₅₄.

Fase móvel: acetato de etila, álcool metílico, água (100: 17:10).

Solução amostra: agitar 0,1 g da droga em 15 mL de álcool metílico durante 20 minutos. Filtrar e secar o filtrado em banho-maria. Suspender o resíduo em 1 mL de álcool metílico.

Solução referência: preparar solução com concentração de 200 µg/mL de ácido clorogênico em álcool metílico.

Procedimento: aplicar na cromatoplaca, separadamente, em forma de banda, 10 µL da Solução amostra e 10 µL da Solução referência. Desenvolver o cromatograma. Remover a cromatoplaca e deixar secar. Nebulizar a placa com difenilborato de aminoetanol SR, e, em seguida, com solução de macrogol 400 a 5% (p/v) em álcool metílico. Examinar sob a luz ultravioleta em 365 nm.

Resultados: no esquema a seguir há as sequências de zonas obtidas com a Solução referência e a Solução amostra. Outras zonas podem, ocasionalmente, aparecerem.

Parte superior da placa		
	Zona de coloração castanha Zona de fluorescência amarela intensa Zona de coloração azul	
_	Zona de fluorescência amarela Zona de fluorescência amarela Zona de fluorescência amarela Zona de coloração castanha	
Ácido clorogênico: zona de fluorescência azulada	Zona de fluorescência azulada Zona de coloração amarela	
	Zona de fluorescência azulada	
Solução referência	Solução amostra	

TESTES

Metais pesados (5.4.5). Cumpre o teste.

Matéria estranha (5.4.1.3). No máximo 2,0%. É permitida a presença de pedúnculos e pedicelos das inflorescências, em um comprimento de até 3 cm e correspondendo a um valor máximo de 1,0% do peso seco do conjunto.

Perda por dessecação (5.2.9.1). Método gravimétrico. No máximo 12,5%.

Cinzas totais (5.4.1.5.1). No máximo 6,0%.

Contagem do número total de micro-organismos mesófilos (5.5.3.1.2). Cumpre o teste.

Pesquisa de micro-organismos patogênicos (5.5.3.1.3). Cumpre o teste.

Resíduos de agrotóxicos (5.4.3). Cumpre o teste.

DOSEAMENTO

Flavonoides totais

Proceder conforme descrito em Espectrofotometria de absorção no visível (5.2.14). Preparar as soluções como descrito a seguir.

Solução estoque: pesar, com exatidão, cerca de 0,1 g da droga pulverizada (800 μm) (5.2.11) em balão de fundo redondo com boca esmerilhada de 100 mL. Acrescentar 15 mL de álcool etílico a 80% (v/v)

e aquecer em banho-maria a temperatura de 90 °C, sob refluxo, durante 15 minutos. Após resfriamento filtrar em pequena porção de algodão para balão volumétrico de 25 mL. Retornar o resíduo da droga e o algodão para o mesmo balão de fundo redondo, adicionar 10 mL de álcool etílico a 80% (v/v). Aquecer, sob refluxo, durante 15 minutos. Filtrar para o mesmo balão volumétrico de 25 mL. Após resfriamento, à temperatura ambiente, completar o volume para 25 mL com álcool etílico a 80% (v/v) e homogeneizar. Diluir alíquota de 10 mL dessa solução em balão volumétrico de 25 mL completando com álcool etílico a 80% (v/v).

Solução amostra: transferir 10 mL da Solução estoque para balão volumétrico de 25 mL, adicionar 1 mL de solução de cloreto de alumínio a 2% (p/v) em álcool etílico a 80% (v/v), completar o volume com o mesmo solvente e homogeneizar.

Solução branco: transferir 10 mL da Solução estoque para balão volumétrico de 25 mL, completar o volume com álcool etílico a 80% (v/v) e homogeneizar.

Procedimento: medir a absorvância da Solução amostra em 420 nm, 30 minutos após seu preparo, utilizando a Solução branco para o ajuste do zero. Calcular o teor de flavonoides totais expressos como quercetina, em porcentagem, segundo a expressão:

$$TF = \frac{A \times FD}{m \times 561}$$

em que,

TF = teor de flavonoides totais expressos em quercetina % (p/p);

A = absorvância medida para a *Solução amostra*;

FD = fator de diluição;

561 = coeficiente de absorção específica da quercetina;

m = massa em gramas da amostra utilizada, considerando a perda por dessecação.

Quercetina e 3-0-metilquercetina

Proceder conforme descrito em Cromatografia a líquido de alta eficiência (5.2.17.4). Utilizar cromatógrafo provido de detector ultravioleta a 357 nm para a 3-O-metilquercetina e 371 nm para a quercetina, pré-coluna empacotada com sílica octadecilsilanizada, coluna de 250 mm de comprimento e 4,6 mm de diâmetro interno, empacotada com sílica octadecilsilanizada (5 µm), mantida a temperatura de 22 °C; fluxo da Fase móvel de 0,6 mL/minuto.

Eluente (A): água e ácido trifluoracético (100:0,006).

Eluente (B): acetonitrila.

Tempo (minutos)	Eluente (A) (%)	Eluente (B) (%)	Eluição
0 - 5	$72 \rightarrow 65$	$28 \rightarrow 35$	gradiente linear
5 - 13	65	35	isocrática
13 - 18	$65 \rightarrow 40$	$35 \rightarrow 60$	gradiente linear
18 - 20	$40 \rightarrow 30$	$60 \rightarrow 70$	gradiente linear
20 - 25	$30 \rightarrow 72$	$70 \rightarrow 28$	gradiente linear
25 - 30	72	28	isocrática

Solução amostra: pesar, com exatidão, cerca de 0,15 g da droga seca e pulverizada (850 μm) (5.2.11) em balão de fundo redondo de 100 mL. Adicionar 15 mL de álcool etílico a 80% (v/v) e levar ao refluxo em banho-maria a 90°C durante 30 minutos. Deixar esfriar a temperatura ambiente. Filtrar o extrato em algodão para balão volumétrico de 25 mL. Retornar o algodão e o resíduo da droga para o mesmo balão de fundo redondo e extrair novamente, sob refluxo, com mais 10 mL de álcool etílico a 80% (v/v), durante 15 minutos. Esfriar e filtrar para o mesmo balão volumétrico de 25 mL, completar o volume com álcool etílico a 80% (v/v) e homogeneizar. Filtrar em unidade filtrante de $0,45 \, \mu m$.

Solução referência (1): dissolver quantidade exatamente pesada de quercetina em álcool metílico para obter solução a 54 µg/mL. Filtrar em unidade filtrante de 0.45 µm.

Solução referência (2): dissolver quantidade exatamente pesada de 3-O-metilquercetina em álcool metílico para obter solução a 40 µg/mL. Filtrar em unidade filtrante de 0,45 µm.

Procedimento: injetar, separadamente, 10 μL da Solução referência (1), 10 μL da Solução referência (2) e 10 μL da Solução amostra. Registrar os cromatogramas e medir as áreas sob os picos. Os tempos de retenção para a quercetina e 3-O-metilquercetina são cerca de 18 e 19 minutos, respectivamente. Calcular o teor de quercetina e 3-O-metilquercetina, separadamente, em porcentagem, considerando as respectivas Soluções referências, segundo a expressão:

$$TQ = \frac{C_r \times A_a \times 25 \times 100}{A_r \times m}$$

em que,

TQ = teor de quercetina ou 3-O-metilquercetina % (p/p);

C_r = concentração da quercetina ou 3-*O*-metilquercetina na *Solução referência* em g/mL, considerando a pureza da substância de referência;

 A_r = área sob o pico correspondente à quercetina ou a 3-O-metilquercetina na Solução referência;

 A_a = área sob o pico correspondente à quercetina ou a 3-O-metilquercetina na Solução amostra;

m =massa em gramas da amostra utilizada, considerando a perda por dessecação.

EMBALAGEM E ARMAZENAMENTO

Em recipiente hermeticamente fechado ao abrigo da luz e do calor.

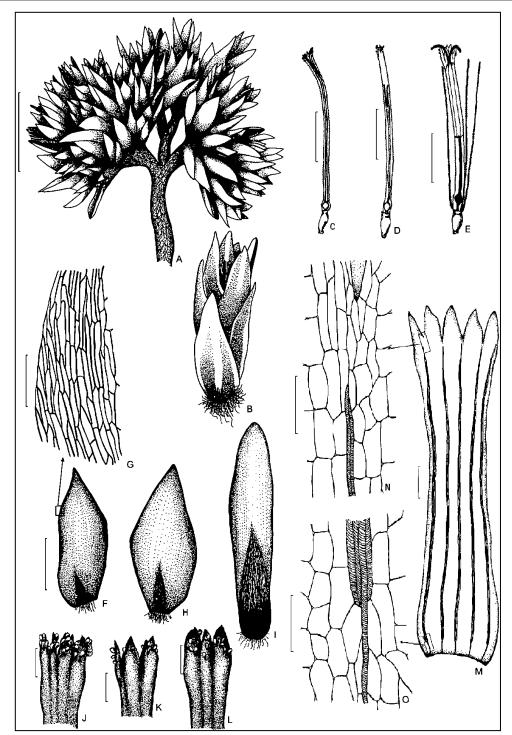


Figura 1 – Aspectos macroscópicos e microscópicos em Achyrocline satureioides (Lam.) DC.

As escalas correspondem em A a 5 mm, B, C, D, E, F, H e I a 1 mm, G a 100 µm, J, K e L a 200 µm, M a 300 µm, N e O a 50 µm.

A - aspecto geral de uma inflorescência. B - aspecto de um capítulo em vista lateral. C e D - flores pistiladas em vista lateral. E - flor perfeita com cerdas do papus em vista lateral. F - aspecto da bráctea externa do capítulo. G - detalhe do parênquima da bráctea, como indicado em F. H - aspecto da bráctea mediana do capítulo. I - aspecto da bráctea interna do capítulo. J a L - porção apical da corola tubulosa, mostrando a variabilidade de número e tamanho dos tricomas glandulares. M - aspecto geral da nervação da corola. N - detalhe da nervação na porção apical da corola, como indicado em M. O - detalhe da nervação na porção basal da corola, como indicado em M.

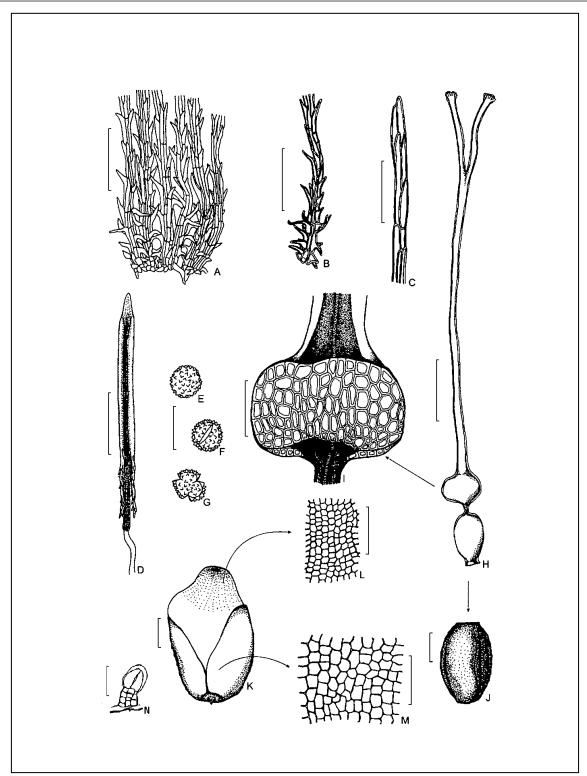


Figura 2 – Aspectos macroscópicos e microscópicos do pó em Achyrocline satureioides (Lam.) DC.

As escalas correspondem em $\bf A$ a 10 μ m, $\bf B$, $\bf C$, $\bf D$, $\bf I$, $\bf L$ e $\bf M$ a 100 μ m, $\bf E$, $\bf F$ e $\bf G$ a 30 μ m, $\bf H$ a 0,5 mm, $\bf J$ e $\bf K$ a 200 μ m, $\bf N$

A - detalhe da base do papus. B - base da cerda do papus. C - ápice da cerda do papus. D - estame, em vista lateral. E, F e G - grãos de pólen. H - aspecto do gineceu em vista lateral. I - detalhe do gineceu, na região dilatada indicada em H. J - detalhe do ovário, na região indicada em H. K - fruto, em vista lateral. L - detalhe de fragmento do tegumento da semente na porção indicada em K. M - detalhe de fragmento do pericarpo do fruto na porção indicada em K. N - aspecto de um tricoma glandular com pedicelo trisseriado e duas células terminais.